
Figure 1. Pathway of branched chain amino acid catabolism.

In the present scenario of rising concern over the environmental issues, to 
reduce the nitrogen emission and to minimize the feed cost in the feed indus-
try, lowering crude protein level with the addition of synthetic amino acids is 
the standard practice. In practical ration formulation a deficit of first-limiting 
amino acids can be prevented by supplying these amino acids in their free form 
particularly methionine, lysine, threonine, valine, arginine, and isoleucine (Ile). 
A progressive reduction of the dietary protein content can, however, lead to a 
situation where other amino acids, which are of no special concern in diets with 
normal protein levels, become limiting for performance. Isoleucine is consid-
ered as the fifth limiting amino acid in corn-soybean based diets and also can 
be a co-limiting amino acid together with valine in broilers diets when animal 
by products comprises 3% or more in the diet (Corzo et al., 2010).
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Isoleucine metabolism
Isoleucine is a branched chain amino acid (BCAA) and along with valine and leucine are essential amino acids. Although most of 
amino acids are catabolized in the liver, BCAAs are initially catabolized in skeletal muscle into BCKA (branched chain keto acid) with 
the involvement of branched-chain aminotransferase (BCAT) (leucine to α-keto isocaproate, valine to α-keto isovalerate, and isoleu-
cine to α-keto-β-methyl-valerate). BCKA will be decarboxylated by branched-chain α-ketoacid dehydrogenase (BCKD) in the liver. 
Finally, these BCAA metabolites are catabolized by a series of enzymatic reactions to final-products (acetyl-CoA from leucine, 
succinyl-CoA from valine, and both acetyl-CoA and succinyl-CoA from isoleucine), which enter the TCA cycle (Fig. 1).
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Isoleucine requirement 
The ideal ratio of Ile to Lys (dIle:dLys) for optimum growth performance and breast meat yield in broilers is considered as 67 (Kidd 
et al., 2004). According to a study by CJ Brazil (article in press) recommended SID Leu, Val, and Ile levels for optimal BW gain were 
estimated at 1.33, 0.96 and 0.84% for the starter phase; 1.23, 0.83 and 0.75% for the grower phase; and 1.16, 0.77 and 0.68% for 
the finisher phase, respectively. Similarly, SID Leu, Val, and Ile levels required for gain:feed optimization were estimated at 1.37, 
0.94 and 0.87% during the starter phase; 1.23, 0.82 and 0.75%  during the grower phase; and 1.15, 0.77 and 0.70% during the finish-
er phase, respectively. The NRC has increased its Ile recommendation for commercial layers to 650 mg/d per hen (NRC, 1994) from 
550 mg/d per hen (NRC, 1984). For brown egg layers, NRC (1994) has recommended 715 mg isoleucine daily on 110 g of feed per 
hen. Harms and Russell (2000) suggested a daily requirement of Ile at 601 mg/d for a daily egg mass of 53g. The recommended 
dietary intake of dIle is 79% of lysine for single- comb white leghorn laying hens as per CVB (1996) (Table 2). The Ile requirements 
of turkeys and ducks are mentioned in Table 3.

Table 1. Ideal digestible amino acid profiles for broiler chickens expressed as percentage of lysine

Table 2. Ideal amino acid profiles for single-comb white leghorn laying hens1

Table 3. Isoleucine requirement of Turkeys and White Pekin Ducks (%) (90% DM) NRC (1994)
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1Amino acid requirements expressed as a percentage of the requirement or recommendation for lysine.
2Calculated from total amino acid requirements.
3Calculated from digestible amino acid recommendations.
4Based on digestible amino acid requirements.
5Calculated from total amino acid recommendations for 32-to-45-week-old laying hens.
6Digestible amino acid basis.
7Based on true digestible amino acid requirements for maximal egg mass in 28-to-34-week-old laying hens.
8The arginine:lysine ratio was estimated to be 107 or less. 
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Growing Turkeys (Males)
Weeks

Ile

Weeks
Ile

White Pekin Ducks

Breeders Laying hens

Breeders0-2
0.63

0-4
1.1

4-8
1.0

8-12
0.8

12-16
0.6

16-20
0.5

20-24
0.45 0.4 0.5

2-7
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-
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Feed consumption
The mTOR signalling pathway plays a vital role in the brain to detect nutrient availability and regulate energy balance (Cota et al., 
2006). As isoleucine is also associated with mTOR signalling thus, low level of isoleucine can cause reduced feed intake.
BCAA deficient diet dramatically reduces feed intake by activating the GCN2 signalling pathway, which might participate in lipolysis 
(down-regulating lipogenesis genes or up-regulating lipolysis genes) in the liver and adipose tissue. 

Isoleucine content in raw materials

Beyond performance roles of isoleucine

The approximate isoleucine (%) in the common feed ingredients is given in Table 4.

Immunity
Immune cells oxidize BCAA as fuel sources and incorporate BCAA as the precursors for the synthesis of new immune cells, effector 
molecules, and protective molecules. Lack of BCAA in diet impairs many aspects of immune function and increases susceptibility to 
pathogens (Zhang et al., 2017).
Isoleucine and leucine contribute to immunity through the mammalian target of rapamycin (mTOR) signalling pathway. mTOR 
plays a vital role in the regulation of innate and adaptive immune responses and also various immune functions like promoting 
differentiation, activation and function in T-cells, B-cells and antigen presenting cells (Soliman, 2013). Isoleucine level also have a 
strong correlation with the excretion of β-defensin. Deficiencies of BCAA (leucine, isoleucine, valine) cause involution of the thymus 
(Konashi et al., 2000). Isoleucine could become marginal and its limitation could impair the immune function responses when hens 
are fed low protein diets (Konashi et al., 2000).
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Amino acid digestibility expressed as standardized ileal digestibility. Amino acid values are standardized for 88% 
dry matter (Source: Hy- Line. W-36 commercial layer management guide).

Barley
Canola meal (38%)
Corn 
Corn gluten meal
Cotton seed meal, mech extracted
Cotton seed meal, direct solv.
Fish meal, white
Flax seed
Linseed meal flax, expeller
Linseed meal flax, solvent
Meat bone meal
Millet, pearl grain
Oats grain
Poultry by product meal
Rice bran, unextracted
Rice grain rough
Safflower seed meal, expeller
Sorghum, milo, grain
Soybean meal, expeller
Soybean meal, solvent
Sunflower meal, expeller
Sunflower meal, solvent
Wheat, hard grain
Wheat, soft grain
Wheat bran
Wheat middlings

0.42
1.51
0.29
2.30
1.31
1.33
3.00
0.95
1.70
1.80
1.70
0.52
0.53
2.10
0.39
0.33
0.28
0.60
2.18
2.50
2.40
1.39
0.69
0.43
0.60
0.70

0.34
1.25
0.26
2.19
0.93
0.95
2.55
0.81
1.49
1.58
1.41
0.46
0.47
1.79
0.30
0.27
0.22
0.53
1.94
2.22
2.14
1.25
0.61
0.38
0.47
0.58

Ingredients (As fed basis) Isoleucine %
Total % Digestible %

Table 4. Isoleucine content (%) of commonly used feed ingredients
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The function of isoleucine in enhancing glucose uptake 
and muscular glucose transporter expression (GLUT1 
and GLUT4) was also demonstrated in C2C12 myotubes 
(Zhang et al., 2017). GLUT1 and GLUT4 are vital glucose 
transporters in muscle. Similarly, SGLT1 and GLUT2 are 
important glucose transporters in the small intestine. 
Isoleucine could potentially increase muscle growth 
and intestinal development and health by up-regulat-
ing the protein expression of GLUT1 and GLUT4 in 
muscle and enhancing the expression of SGLT1 and 
GLUT2 in the small intestine (Fig. 2).
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CONCLUSION
Lowering the crude protein level in poultry diet is a trend in poultry industry to address the current environmental pollution and for 
optimization of feed cost and isoleucine plays vital role in maintaining the amino acid balance in a low crude protein diet. Again, 
isoleucine along with valine and leucine also have positive influence on nutrient metabolism as well as immunity and gut health 
which can be focused further to have a clear impression.

Figure 2. Isoleucine up-regulates intestinal and
muscular transporters.
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